QUANTUM UNIVERSE: GEOMETRY & TOPOLOGY. **FINAL EXAM 2013/14**

DOCENT: A. V. KISELEV

- ⁺ **Problem 1.** Prove that for all $p \ge 1$, $q \ge 1$ one obtains a tensor by contracting the kth upper with ℓ th lower index in a tensor field of type (p,q)on a smooth real manifold.
- **Problem 2.** Describe the set of all geodesic curves on the surface $\Sigma^2 = \Gamma_{\text{curv}}$ $\{x^2+y^2=1,\,z^2+w^2=1\}\subset\mathbb{E}^4$, where x,y,z,w are Cartesian coordinates.

- **Problem 3.** Can it (always*) be that the sum of angles in a triangle formed by geodesics on a sphere $\mathbb{S}^2 \subset \mathbb{E}^3$ is greater than π ?
 - Can it (always*) be that the sum of angles in a triangle formed by geodesics on the Lobachevsky plane \mathbb{H}^2 is less than π ?
- **Problem 4.** Show that [any interval in] the curve r = const > 0 is not a geodesic with respect to the parametrisation $d\ell^2 = dr^2 + \sinh^2 r \, d\varphi^2$ of the Lobachevsky plane.
- **Problem 5.** Prove that the scalar curvature R of a two-dimensional real Riemannian manifold M^2 with a symmetric Riemannian connection associated with the metric $g_{\mu\nu}$ is related to just one component of the Riemann tensor $R_{ij,k\ell}$ on M^2 by the formula

$$R = \frac{2R_{12,12}}{\det(g_{\mu\nu})}.$$

Date: April 4, 2014.

Do not postpone your success until May Day. GOOD LUCK!